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Generalized Forms, Connections,
and Gauge Theories
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Generalized differential forms of typdé = 2, and flat generalized connections are used

to describe the&sQ(p, q) form of Cartan’s structure equations for metric geometries,

source-free Yang-Mills fields, and the Einstein—Yang-Mills equations in four dimen-
sions. Maxwell’s equations for typld = 2 forms are also constructed.
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1. INTRODUCTION

In recent years various generalizations of the standard exterior algebra and
calculus of differential forms have been discussed in the literature. An illustra-
tive sample of such studies (Asada, 2001; Dubois-Violette, 1999, 2000; Cotrill-
Shepherd and Naber, 2001, 2003; Madore, 1999) also contains references to related
research. This paper is concerned with the further consideration of another gener-
alization, one in which the algebra and calculus of ordinary exterior forms have
been extended to an algebra and calculus of diffaygras of generalized differen-
tial forms The approach followed here has been developed in a number of papers
(Nurowski and Robinson, 2001, 2002; Robinson, 2003), and applied to a variety
of physical systems including field theories (Gataal.,, 2002).

Ordinary differential forms are, by definition, generalized forms of type
N = 0. The expression for a single generalized form of typewhere N is
a nonnegative integer, will usually include ordinary forms of different degrees.
For example, a generalizeaiform of type N may include forms of degres,
where p < q < N + p. Generalized forms of typ& admit a number of dif-
ferent representations (Robinson, 2003). In this paper they will be described by
using expansions which includé linearly independent minus 1-forms}, i =
1,..., N, and their exterior products. These minus 1-forms are required to satisfy
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the usual rules obeyed by ordinap/forms, but for themp = —1. In order

to ensure that their exterior derivatives are zero-forms and dhat 0, they

are required to satisfy the conditiaiz’ = ki, wherek' are constants. Although
there is a freedom in the choice of the basis of minus 1-forms, by aNgL(
transformation, and this may be used to change the consthraad certain
components, it will be assumed here that the basis is fixed and all the con-
stants are nonzero Consequently a generaléaim of type N will be written

p+ p+ i
in this paper asa—a+ " i o+ ‘o Il,zg'lg'ur +oa, ijg'l,...,;J +

p+N i p p+l p+j p+j p+N
c i N Here @, T, @ = il @ i
are respectively, ordinary-, p + 1-,.. ., p+] yooon P+ N- forms 1<j<N,
andiy, ...,ij,...,in range and sumover 1 %. Each separate termin such an ex-

pansion is a generalized form of degmeAs in previous papers, bold-face Roman
letters are used to denote generalized forms, ordinary forms are always denoted
by Greek letters, and, where it is useful, the degree of a form is indicated above it.
In this paper the exterior product of any two forms, for example 8, is written

af. By standard convention any ordinary fonmwnh g either negative or greater
thann, the dimension of the manifold M, is zero. Whpr> 0 a generalized form,

such asi above, may be regarded as an extension of the ordipoym given by

&. Generalized forms of all different degrees and types obey the same basic rules
of exterior multiplication and differentiation as those which govern the aIgebra
and calculus of ordlnary d|fferent|al forms. Two basic resuItsame; (- 1)qua

andd(a b) d(a)b + (= 1)pa d(b) There are some differences from the standard
results for ordinary, that it = 0, forms whenN > 0. For instance, it follows
from the definitions that generalized forms of negative deguee 0, are permit-
ted, and it has been shown that whér> 0 generalized forms are closed if and
only if they are exact.

In this paper the focus will be on further applications of generalized connec-
tions of typeN = 2 (Robinson, 2003). The primary aim is to show that Cartan’s,
Einstein’s, and the Yang-Mills equations can all be formulated using flat gener-
alized connections. First, results on tyle= 2 generalized connections will be
reviewed and the notation to be used in this paper will be fixed. Then it will be shown
that Cartan’s structure equations for metric connections, ondimensional man-
ifold M, can be simply represented in terms of a tyype= 2 flat generalized con-
nection. In contrast to an earlier approach using t\pe 1 forms (Nurowski and
Robinson, 2001) a formulation using a basis of 2-forms, rather than a co-frame,
is employed here. Special cases, such as Ricci flat Levi-Civita connections, will
also be noted and the results hold in any dimension. Next, a result which applies
in four-dimensional space—times, and which is suggested by the formulation of
Cartan’s equations, will be exhibited. It will be shown how both the source free
Yang-Mills equations and gravity coupled to the source free Yang-Mills field, via
the Einstein—Yang-Mills equations, can be formulated in terms of lype 2 flat
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generalized connections. These results provide a “universal” conceptual frame-
work, that of flat connections constructed from generalized forms, within which
all these equations can be placed. Finally, in order to provide a simple contrasting
example which employs a nonflat connection, source-free Maxwell-like equations
are constructed using typge = 2 forms on a four-dimensional manifold with a
Lorentzian metric. The resulting equations can be reduced, by choice of gauge, to
a Proca-like equation for an ordinary 3-form.

2. GENERALIZED CONNECTION FORMS OF TYPE N =2

It will be helpful to think of generalized connections as extensions of ordinary
connections, as follows. Let be an ordmarygl = 0) connection 1-form with
values in the L|e algebr@of aLie groupG. Let Q denote its curvature 2-form, so
thath da + aa and letd; denote the covariant exterior derivative with respect
to «. DefineA, a g- vaIU(led generalized connection 1-form of type to be the
generalized extension afwhen

A=+ &0 + il + ainiag g2 G, N L T,
The ordinaryp-forms, 2< p < N + 1, given byozzil, N(;lil, ..., N take val-
ues ing. The curvature 2-form oA is F = dA + AA, and straightforward scom-
putation gives

2 2 2 3
F= Q+ ailkll + (dlail + Zaiﬂzklz)gll
3 2 2 4 N

+ (dlaiﬂz + o, @i, + 3ai1i2i3kl3)§|1'2 +...

Only typeN = 2 forms will be considered henceforth in this paper so the notation
can be simplified a little. Let

A=a+p +ye* (1)

i =1, 2, be a generalized connection 1-form on a manifold M with values in the
Lie algebrag of a matrix Lie groupG. Hereq, i, andy areg-valued ordinary 1-,
2-, and 3-forms respectively agd?® = ¢1z2. The curvature 2-form is given by

F = (Qu+BK) + (dar + K2¥)¢" + (du B2 — K'y)¢?
+(doy + P12 — BaBr)C (2

andd, denotes the covariant exterior derivative with respeat,twith the latter
interpreted as an ordinary connection 1-form with curvature 2-f@gm= do +
aa. Such a convention will be followed throughout. By considering the case when
the curvaturer is zero it is easy to see from Eq. (2) that a flat connection can
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always be written just in terms of a 1-form and a 2-form, for example as
A =a—(K)HQ + B2KA)¢t + B20% + (K da ot 2. (3)

As in previous papers, gauge transformations for such connections and cur-
vatures may be defined to be generated by generalized zero-forms on M taking
values in a Lie groufs. This is a broad notion of gauge equivalence. The g@up
is determined by the semidirect product of a Lie gr& pnd the abelian groups,
under addition, of modules of certain ordinary differential forms with values in
the Lie algebrag of G. In the present context typd = 2 forms and connections
are being considered so, without loss of essential generality,cher@ will be
assumed to be of the forgi= mn, wherem = 1+ ¢t + ve*? andn = 7. Here
w andv are, respectively, ordinary 1- and 2-forms on M with values in the Lie
algebrag andr is an ordinary zero-form on M with values in the1 Lie gro@p

[In previous papergy € G was written in the forng = 7(1+ 7¢t...) € Gl,
wherer is an ordinary zero-form on M with values in the Lie groGp andn
is a 1-form with values in the Lie algebgg etc. However the expression fgr
can always be rewritteln differently as the product of two zero-forms on M ~as
mn, wherem = 1+ 7~ 4 ..., andn = 7. Because this way of writing
g enables the transformation properties of the connection to be expressed in a
more readily recognizable form than was the case previously it will be used here.
Furthermore as far as the discussions in this paper are concerned there is no loss in
essential generality, compared with previous work (Robinson, 2003), in assuming
that the choice of basis of minus 1-forms?(¢?) enables the coefficient gf in
m to be set equal to zero.]

Recall that group multiplication i® is exterior multiplication and closure
is ensured with this type of choice fam, that is the vanishing of the coefficient
of ¢2. The identity is the identity i, 1, andg™* = n~'m~! wherem1 =1 —
pet — itz

Under a gauge transformation generatedgbA — A= g~ldg+ g tAg,
where

A=r"tdr+ 7 o 4+ (k)] + 7Y B+ o + ap — (kl)_lQu — k2]t
+r B+ Kl e + 7y + Dyv +av — v — pfa + Poul g (4)

. , 2 3 . 4

Furthermores — F = 7 —*m~1Fmn where, ifF = f + F ¢ + F ¢12,
. 2 3 2 2., 3
MFm=F +(F1+Fu—pF) +F2¢

4 2 2 3 3 12
+(F +Fv—vl 4+ (Fap+plF 2. (5)

It should be noted that with the definition of gauge transformation used here any
connection 1-formA, as in Eq. (1), is gauge equivalent to the exterior product of
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atypeN = 1 form with a minus 1-form. For example, a gauge transformation of
A generated byn, with 1 = (k})~2a andv = —(k%)~18,, gives

A =[B1+ (KY7K2B2 + (K22 + (—y + (KH UL B2)c . (6)

Any flattypeN = 2 connection can be expressed in the fgritdg. A simple
computation gives

g Mg = [7Ydx + 7 (k'] + 7 (kD IR, — KPv]m et
+ Kk tome? + n_l(du V) l?, @)

whered,, denotes the covariant exterior derivative with respectkdu, so that
d.v = dv + (—k*u)v — v(—kn), andQ, = d(—k*u) + (=K w)(—k*w). It fol-
lows from Eq. (7) that the expression for the flat connection given by Eq. (3) is
equal tom~tdm where
m=1— (k) et + (k). (8)

The convariant exterior derivative of a generalizedorm s is defined by

using the standard type of formula
das = ds+ As + (—1)P*1sA,

and throughout the paper covariant exterior derivatives are denotddilith a
subscript indicating the connection.

A generalized zero-form is said to be parallely-transported along a curve in
M, with tangent vectolV, whenV |da p = 0. WhenA is flat a generalized zero-
form at any point in M defines a unique paralfeform field on M satisfying the
linear system of first-order equations of parallel propagatiam, = O.

3. CARTAN'S STRUCTURE EQUATIONS FOR METRIC CONNECTIONS

Recall that if6 is an x 1 matrix of ordinary 1-forms on M with entries?,
a=1,...,n,which constitutes a co-frame, then Cartan’s structure equations for
an affine connection represented bynar n matrix valued 1-formw are given by

d,0 =0,
do + ww = Q,. 9)

where® andS2 are the torsion and curvature 2-forms. The first and second Bianchi
identities are given by

d,® — Q.0 =0,
. = 0. (10)
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Now consider the case where the co-frame determines a metric of signature
(p, q) given byds? = 2,02 ® 6°, wheren,p, are constants. The metric connection
1-forms and curvature 2-forms take valuesip, q). As is well known, Cartan’s
equations for metric connections are equivalent to equations expressed entirely
in terms ofsqa(p, q)-valued forms. This can be seen by introducing b, q)-
valued 2- and 3-formsy and E, with entries in their respective x n matrix
representations given by

2 = 636,
82 = 0%, — 62O, (11)
The equations
doX = &,
do + ww = Q, (12)

hold if and only if Cartan’s structure equations are satisfied and can be regarded
as theSQ(p, q) version of those equations. In addition the analogue of the first
Bianchi identity is

d,E + 2Q, — 2, =0. (13)

Furthermore the connectian is the unique Levi-Civita torsion free metric con-
nection wher® vanishes, an® = 0 if and only if € = 0.

The SQ(p, q) Cartan equations can be naturally expressed in terms of type
N = 2 flat generalized connections. By using the results of Section 2, or by direct
calculation, it is a straightforward matter to verify the following results.

Proposition 3.1. Let the so(p, q)-valued generalized connection 1-férhe
given by
A=o+2P+[-(K)TQ - (KO KE]e? - (k¥)tect (14)

where)"p = 626, and Q2 and E are, respectively, a so(jg)-valued 2-form and
3-form. Its curvature is given by

F=Q,—Q+[d,= — 8¢t + (k)Y —d, 2 — k'd, = + k!E]¢?
+ k) Y-d,E + QX — =Q]¢2 (15)
HenceA is flat if and only ifQ = @, &} = d,0%), — 62d,0, and the Cartan

structure equationsEgs. (11) and (12)—and Eq. (13), are satisfied
The next corollary follows directly from Eg. (8).
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Corollary 3.1. WhenA is flatA = m~*dm where
m=1- kY twct+ KK -Q, — k=] (16)

Corollary 3.2. WhenE =0 in Egs. (14) and (15), and the 1-fornjg?} are
linearly independentA is flat if and only ifw is the Levi-Civita connection, with
curvature, of the signature (p, g) metric ds= 7,p026°.

By imposing restrictions on the choices @fand g in Egs. (14) and (15)
differenttypes of geometries can be associated with flat connections. The following
corollary contains one example of this—Ricci flat metrics.

Corollary 3.3. Let(i) E = 0in Egs. (14) and (15), (i3 = 1/2C35 x4, where
Ca¢ = C2P = 0, and (jii) the 1-formg6?} be linearly independent.

Then the connection 1-form is flat if and only if w is the Levi-Civita
connection of thaicci-flatmetricds? = 7,,026°.

4. FLAT GENERALIZED CONNECTIONS AND FIELD EQUATIONS IN
FOUR DIMENSIONS

Here a source-free Yang-Mills field, with internal symmetry gr&ip cou-
pled to gravity through the Einstein—Yang-Mills equations will be considered. For
the sake of definiteness four-metrids? = 7,,026°, with nap = diag(l, 1, 1-1)
will be considered. The field equations, can be written in the form

d,~ =0,

d, x F =0,

do 4+ ww = Q,
do + aa = F, a7)

wherew is thesq(3,1)-valued Levi-Civita connection 1-fortg = 026, anda is

the Yang-Mills gauge potential (connection) and takes values in the Lie algebra of
G, . Herexf denotes the Hodge dual of the Yang-Mills field (curvature) two form
F = %Fijabzab, and here, b, ¢, d = 1 — 4, and the internal Lie algebra indices

i, ] =1—dimG,. The curvature 2-fornf2 is given by

1
Q2 ==

whereCj§ . are the components of the Weyl conformal curvature of the metric and
Tap are the components of the energy—momentum tensor of the Yang-Mills field.

3 2% 4 27(Tpg =29 + Ty 22 + DS T2 + 24T, (18)
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The last equation is just a convenient way of writing Einstein’s equations
Gab = 87 Tan,

1 1
Tap = Etr (Fach.)C - Z'?achdFCd> . (19)

These equations can be rewritten in terms of a connection 1-foand a
2-form Y which take values in the Lie algebra 8f)1, 3)x G, as follows (c.f.
Robinson, 1995). Let

I'=wls+1a,
YT =1+ 1 %F,
IM=Qle+1.F, (20)

where 1 and Xk respectively represent the identities36(1,3) andG, . The first
two equations in Egs. (17) are then equivalent to the equation

drY =0, (21)
and the second pair of equations in Eq. (17) are equivalent to the equation
drr +I'T =11. (22)

The components of these objects may be written in an index notation as

P% =T = w}s) +65el;, 1% = T§) = 230} + 83+ 1),
andIl% = l‘[f“b'!j = Q?},S!j +6%F'_j.

By comparing the Einstein—Yang-Mills field equations given by Eqgs. (21)
and (22) with the equations in Section 3, it is clear that these equations can be
rewritten in terms of a flat generalized connection 1-form. Let

A=T 4T+ [—(K?) T — (k?) k]2, (23)

wherel’ = wlg + 1 o, T = X1 + 1. * (do + o), andIl are respectively 1-
forms and 2-forms with values in the Lie algebraSf(1, 3) x G,. Then, since
the curvature 2-fornk = dA + AA is given by

F=(dl+TT—10)+dr et — (k3 dr 1T
+ ke Y122 + (KBTI — Y1II)ct?,
the following proposition holds

Proposition 4.1. The connection 1-forrA given by Eqg. (23) is flat if and only if
the Einstein—Yang-Mills equations are satisfied.

Itis a straightforward matter to show that the Yang-Mills equations alone can
also be represented by a flat connection.
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Proposition 4.2. Consider the two parameter family of connection 1-forms
A=a—-DY?r + K+ F)ct+ DY + K+ F)E? (24)

where the parameters cc? are chosen so that B= ¢k — ¢'k? is nonzero. Since
the curvature 2-forms are given by

F=(da+aa—F)— D YPdt +K0y * F)¢t+ DM dof + Ky * )22,

the connectiorA is flat if and only if the one formx and the two fornmr satisfy
the source-free Yang-Mills equationsy 8 ca = F and d, « F = 0.

5. SOURCE-FREE MAXWELL EQUATIONS FOR TYPE N = 2 FORMS

In this concluding section it will be shown that the structure of the source-
free Maxwell-like equations for typ®&l = 2 forms differs from the structure of
the standard Maxwell equations. This is in line with previous resultaNfee
1 forms (Nurowski and Robinson, 2002). It illustrates a difference between the
fields and equations considered above and those determined by nonflat generalized
connections.

The generalized source-free Maxwell equations for tipe- 2 forms, in a
four-dimensional space—time with a Lorentzian metric, are defined to be

dF =0, (25)
d«F =0, (26)

whereF is a generalized 2-form aneF is its Hodge dual, a generalized zero-
form. For N > 0 all closed generalized forms are exact, hence Eq. (25) can be
solved by introducing a potential fd¥, a generalized 1-forndA with F = dA.
As usualA can be interpreted as a connection 1-form with curvakusnd the
gauge freedonA — A= g~ldg+ A is the one-dimensional (abelian) version
of the gauge transformation given in Section 2. Using the notation of Section 2,
applied to this particular potential, it follows from Egs. (1) and (2) thak i
a+ B¢+ yrtthen

F = (da + BiK) + (dB1 + K2p)¢t + (dB2 — K'y)¢ 2+ dyc*2 (27)

Using the definition of Hodge dual for generalized 2-forms (Robinson, 2003).

#F =y + (+0f — K )t — (sl + K2 5 )2 + (el + K % )12
(28)

Now Eg. (26) is satisfied if and only if

12, 3 1
d«F=x+xi¢" +x¢%, (29)
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is zero, that is if and only if

X = dlsdy) + (92 + (R + y —KL s dfp + K25 dBL = 0, (30)
X1 = d(xdB — KL 1) — K2(xdar + K % B) = O; (31)
Xo = —{d(xdBy + K2 % ) — Ki(xdo + Ki i)} = O; (32)

X = d(xda + K % B) = 0. (33)

It should be noted that Eq. (33) is satisfied whenever either Eq. (31) or Eq. (32) is
satisfied. By using the gauge freedom discussed in Section 2 it is possible to choose
a gauge in whichx = 8, = 0. The remaining gauge freedom then is given by
gauge transformations in whic,= mn,n = 7z, m = 1+ (k})~1d(In7)¢?, and

under whichg; andy remain unchanged. In this gauge it follows from Eq. (31)
that

Br = (ko) 8y, (34)

wheres = xdx is the co-differential operator. When this expressiongpis used
Eqg. (32) can be seen to satisfied whenever Eq. (30) is; and the latter, now the only
equation remaining to be solved, becomes the Proca-type equation

Ay + (K + (K)?y =0, (35)

where A = dé§ + 4d is the Laplace operator for 3-forms. Consequently, in this
gauge the potential is given By = (k2) 18y ¢t + y¢12, and it satisfies the field
equations, Egs. (25) and (26), if and only if Eq. (35) is satisfied.

The above calculations could be extended, for example, to straightforwardly
generalize the formalism of higher-order gauge theories (Alvarez and Olive, 2003)
in n dimensions.
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