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Generalized differential forms of typeN = 2, and flat generalized connections are used
to describe theSO(p, q) form of Cartan’s structure equations for metric geometries,
source-free Yang-Mills fields, and the Einstein–Yang-Mills equations in four dimen-
sions. Maxwell’s equations for typeN = 2 forms are also constructed.
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1. INTRODUCTION

In recent years various generalizations of the standard exterior algebra and
calculus of differential forms have been discussed in the literature. An illustra-
tive sample of such studies (Asada, 2001; Dubois-Violette, 1999, 2000; Cotrill-
Shepherd and Naber, 2001, 2003; Madore, 1999) also contains references to related
research. This paper is concerned with the further consideration of another gener-
alization, one in which the algebra and calculus of ordinary exterior forms have
been extended to an algebra and calculus of differenttypes of generalized differen-
tial forms. The approach followed here has been developed in a number of papers
(Nurowski and Robinson, 2001, 2002; Robinson, 2003), and applied to a variety
of physical systems including field theories (Guoet al., 2002).

Ordinary differential forms are, by definition, generalized forms of type
N = 0. The expression for a single generalized form of typeN, where N is
a nonnegative integer, will usually include ordinary forms of different degrees.
For example, a generalizedp-form of type N may include forms of degreeq,
where p ≤ q ≤ N + p. Generalized forms of typeN admit a number of dif-
ferent representations (Robinson, 2003). In this paper they will be described by
using expansions which includeN linearly independent minus 1-forms,ζ i , i =
1, . . . , N, and their exterior products. These minus 1-forms are required to satisfy
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the usual rules obeyed by ordinaryp-forms, but for themp = −1. In order
to ensure that their exterior derivatives are zero-forms and thatd2 = 0, they
are required to satisfy the conditiondζ i = ki , whereki are constants. Although
there is a freedom in the choice of the basis of minus 1-forms, by a GL(N)
transformation, and this may be used to change the constantski and certain
components, it will be assumed here that the basis is fixed and all the con-
stants are nonzero. Consequently a generalizedp-form of typeN will be written

in this paper as
p
a= p

α + p+1
α i1ζ

i1 + p+2
α i1i2ζ

i1ζ i2 + · · · + p+ j
α i1,...,i j ζ

i1, . . . , ζ i j +
· · · + p+N

α i1,...,i N ζ
i1, . . . , ζ i N . Here

p
α,

p+1
α i1,...,

p+ j
α i1,...,i j =

p+ j
α [i1,...,i j ], ...,

p+N
α i1,...,i N ,

are respectively, ordinaryp-, p+ 1-,. . . , p+ j -, . . . , p+ N- forms,1≤ j ≤ N,
andi1, . . . , i j , . . . , i N range and sum over 1 toN. Each separate term in such an ex-
pansion is a generalized form of degreep. As in previous papers, bold-face Roman
letters are used to denote generalized forms, ordinary forms are always denoted
by Greek letters, and, where it is useful, the degree of a form is indicated above it.
In this paper the exterior product of any two forms, for exampleα ∧ β, is written
αβ. By standard convention any ordinary form

q
α, with q either negative or greater

thann, the dimension of the manifold M, is zero. Whenp ≥ 0 a generalized form,
such as

p
a above, may be regarded as an extension of the ordinaryp-form given by

p
α. Generalized forms of all different degrees and types obey the same basic rules
of exterior multiplication and differentiation as those which govern the algebra

and calculus of ordinary differential forms. Two basic results are,
p
a

q
b = (−1)pq

q
b

p
a

andd(
p
a

q
b) = d(

p
a)

q
b+ (−1)p p

a d(
q
b). There are some differences from the standard

results for ordinary, that isN = 0, forms whenN > 0. For instance, it follows
from the definitions that generalized forms of negative degree,p ≤ 0, are permit-
ted, and it has been shown that whenN > 0 generalized forms are closed if and
only if they are exact.

In this paper the focus will be on further applications of generalized connec-
tions of typeN = 2 (Robinson, 2003). The primary aim is to show that Cartan’s,
Einstein’s, and the Yang-Mills equations can all be formulated using flat gener-
alized connections. First, results on typeN = 2 generalized connections will be
reviewed and the notation to be used in this paper will be fixed. Then it will be shown
that Cartan’s structure equations for metric connections, on ann-dimensional man-
ifold M, can be simply represented in terms of a typeN = 2 flat generalized con-
nection. In contrast to an earlier approach using typeN = 1 forms (Nurowski and
Robinson, 2001) a formulation using a basis of 2-forms, rather than a co-frame,
is employed here. Special cases, such as Ricci flat Levi-Civita connections, will
also be noted and the results hold in any dimension. Next, a result which applies
in four-dimensional space–times, and which is suggested by the formulation of
Cartan’s equations, will be exhibited. It will be shown how both the source free
Yang-Mills equations and gravity coupled to the source free Yang-Mills field, via
the Einstein–Yang-Mills equations, can be formulated in terms of typeN = 2 flat
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generalized connections. These results provide a “universal” conceptual frame-
work, that of flat connections constructed from generalized forms, within which
all these equations can be placed. Finally, in order to provide a simple contrasting
example which employs a nonflat connection, source-free Maxwell-like equations
are constructed using typeN = 2 forms on a four-dimensional manifold with a
Lorentzian metric. The resulting equations can be reduced, by choice of gauge, to
a Proca-like equation for an ordinary 3-form.

2. GENERALIZED CONNECTION FORMS OF TYPE N = 2

It will be helpful to think of generalized connections as extensions of ordinary
connections, as follows. Let

1
α be an ordinary (N = 0) connection 1-form with

values in the Lie algebrag of a Lie groupG. Let
2
Ä denote its curvature 2-form, so

that
2
Ä = d

1
α + 1

α
1
α and letd1 denote the covariant exterior derivative with respect

to
1
α. DefineA, a g-valued generalized connection 1-form of typeN, to be the

generalized extension of
1
α when

A = 1
α + 2

αi1ζ
i1 + 3

αi1i2ζ
i1ζ i2 + 4

αi1i2i3ζ
i1ζ i2ζ i3 + . . . N+1

α i1, . . . , i N ζ
i1, . . . , ζ i N .

The ordinaryp-forms, 2≤ p ≤ N + 1, given by
2
αi1, . . . ,

N+1
α i1, . . . , i N take val-

ues ing. The curvature 2-form ofA is F = dA + AA , and straightforward scom-
putation gives

F = 2
Ä+ 2

αi1k
i1 + (d1

2
αi1 + 2

3
αi1i2k

i2
)
ζ i1

+ (d1
3
αi1i2 +

2
αi1

2
αi2 + 3

4
αi1i2i3k

i3
)
ζ i1i2 + . . .

Only typeN = 2 forms will be considered henceforth in this paper so the notation
can be simplified a little. Let

A = α + βi ζ
i + γ ζ 12, (1)

i = 1, 2, be a generalized connection 1-form on a manifold M with values in the
Lie algebrag of a matrix Lie groupG. Hereα, βi , andγ areg-valued ordinary 1-,
2-, and 3-forms respectively andζ 12 = ζ 1ζ 2. The curvature 2-form is given by

F = (Äα + βi k
i )+ (dαβ1+ k2γ )ζ 1+ (dαβ2− k1γ )ζ 2

+ (dαγ + β1β2− β2β1)ζ 12, (2)

anddα denotes the covariant exterior derivative with respect toα, with the latter
interpreted as an ordinary connection 1-form with curvature 2-formÄα ≡ dα +
αα. Such a convention will be followed throughout. By considering the case when
the curvatureF is zero it is easy to see from Eq. (2) that a flat connection can
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always be written just in terms of a 1-form and a 2-form, for example as

A = α − (k1)−1(Äα + β2k2)ζ 1+ β2ζ
2+ (k1)−1dαβ2ζ

12. (3)

As in previous papers, gauge transformations for such connections and cur-
vatures may be defined to be generated by generalized zero-forms on M taking
values in a Lie groupG. This is a broad notion of gauge equivalence. The groupG
is determined by the semidirect product of a Lie groupG and the abelian groups,
under addition, of modules of certain ordinary differential forms with values in
the Lie algebrag of G. In the present context typeN = 2 forms and connections
are being considered so, without loss of essential generality, hereg ∈ G will be
assumed to be of the formg= mn, wherem = 1+ µζ 1+ νζ 12 andn = π . Here
µ andν are, respectively, ordinary 1- and 2-forms on M with values in the Lie
algebrag andπ is an ordinary zero-form on M with values in the Lie groupG.

[In previous papers,g ∈ G was written in the formg= π (1+ 1
πζ 1 . . .) ∈ G,

whereπ is an ordinary zero-form on M with values in the Lie groupG, and
1
π

is a 1-form with values in the Lie algebrag, etc. However the expression forg
can always be rewritten differently as the product of two zero-forms on M, asg=
mn, wherem = 1+ π 1

ππ−1ζ 1+ · · · , andn = π . Because this way of writing
g enables the transformation properties of the connection to be expressed in a
more readily recognizable form than was the case previously it will be used here.
Furthermore as far as the discussions in this paper are concerned there is no loss in
essential generality, compared with previous work (Robinson, 2003), in assuming
that the choice of basis of minus 1-forms, (ζ 1, ζ 2) enables the coefficient ofζ 2 in
m to be set equal to zero.]

Recall that group multiplication inG is exterior multiplication and closure
is ensured with this type of choice form, that is the vanishing of the coefficient
of ζ 2. The identity is the identity inG, 1, andg−1 = n−1m−1 wherem−1 = 1−
µζ 1− νζ 12.

Under a gauge transformation generated byg, A → Â = g−1dg+ g−1Ag,
where

Â = π−1dπ +π−1[α+ (−k1µ)]π +π−1[β1+µα+αµ− (k1)−1Äµ− k2ν]πζ 1

+π−1[β2+ k1ν]πζ 2+ π−1[γ + Dµν + αν − να − µβ2+ β2µ]πζ 12. (4)

FurthermoreF→ F̂ = π−1m−1Fmπ where, ifF = 2
z+ 3

zi ζ
i + 4
zζ 12,

m−1Fm = 2
z+ (

3
z1+

2
zµ− µ 2

z)ζ 1+ 3
z2ζ

2

+ (
4
z+ 2

zν − ν 2
z+ (

3
z2µ+ µ

3
z2)ζ 12. (5)

It should be noted that with the definition of gauge transformation used here any
connection 1-formA, as in Eq. (1), is gauge equivalent to the exterior product of
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a typeN = 1 form with a minus 1-form. For example, a gauge transformation of
A generated bym, with µ = (k1)−1α andν = −(k1)−1β2, gives

Â = [β1+ (k1)−1k2β2+ (k1)−1Äα + (−γ + (k1)−1dαβ2)ζ 2]ζ 1. (6)

Any flat typeN = 2 connection can be expressed in the formg−1dg. A simple
computation gives

g−1dg = [π−1dπ + π−1(−k1µ)π ] + π−1[−(k1)−1Äµ − k2ν]πζ 1

+ k1π−1νπζ 2+ π−1(dµν)πζ 12, (7)

wheredµ denotes the covariant exterior derivative with respect to−k1µ, so that
dµν = dν + (−k1µ)ν − ν(−k1µ), andÄµ ≡ d(−k1µ)+ (−k1µ)(−k1µ). It fol-
lows from Eq. (7) that the expression for the flat connection given by Eq. (3) is
equal tom−1dm where

m = 1− (k1)−1αζ 1+ (k1)−1β2ζ
12. (8)

The convariant exterior derivative of a generalizedp-form s is defined by
using the standard type of formula

dAs= ds+ As+ (−1)p+1sA,

and throughout the paper covariant exterior derivatives are denoted byd with a
subscript indicating the connection.

A generalized zero-formp is said to be parallely-transported along a curve in
M, with tangent vectorV, whenVcdA p = 0. WhenA is flat a generalized zero-
form at any point in M defines a unique parallelp-form field on M satisfying the
linear system of first-order equations of parallel propagation,dA p = 0.

3. CARTAN’S STRUCTURE EQUATIONS FOR METRIC CONNECTIONS

Recall that ifθ is an× 1 matrix of ordinary 1-forms on M with entriesθa,
a = 1, . . . , n, which constitutes a co-frame, then Cartan’s structure equations for
an affine connection represented by ann× n matrix valued 1-formω are given by

dωθ = 2,

dω + ωω = Äω. (9)

where2 andÄ are the torsion and curvature 2-forms. The first and second Bianchi
identities are given by

dω2−Äωθ = 0,

dωÄω = 0. (10)
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Now consider the case where the co-frame determines a metric of signature
(p, q) given byds2 = ηabθ

a ⊗ θb, whereηab are constants. The metric connection
1-forms and curvature 2-forms take values inso(p, q). As is well known, Cartan’s
equations for metric connections are equivalent to equations expressed entirely
in terms ofso(p, q)-valued forms. This can be seen by introducing theso(p, q)-
valued 2- and 3-forms,6 and4, with entries in their respectiven× n matrix
representations given by

6a
b = θaθb,

4a
b = 2aθb − θa2b. (11)

The equations

dω6 = 4,

dω + ωω = Äω (12)

hold if and only if Cartan’s structure equations are satisfied and can be regarded
as theSO(p, q) version of those equations. In addition the analogue of the first
Bianchi identity is

dω4+6Äω −Äω6 = 0. (13)

Furthermore the connectionω is the unique Levi-Civita torsion free metric con-
nection when2 vanishes, and2 = 0 if and only if4 = 0.

TheSO(p, q) Cartan equations can be naturally expressed in terms of type
N = 2 flat generalized connections. By using the results of Section 2, or by direct
calculation, it is a straightforward matter to verify the following results.

Proposition 3.1. Let the so(p, q)-valued generalized connection 1-formA be
given by

A = ω +6ζ 1+ [−(k2)−1Ä− (k2)−1k16]ζ 2− (k2)−14ζ 12, (14)

where
∑a

b = θaθb andÄ and4 are, respectively, a so(p, q)-valued 2-form and
3-form. Its curvature is given by

F = Äω −Ä+ [dω6 −4]ζ 1+ (k2)−1[−dωÄ− k1dω6 + k14]ζ 2

+ (k2)−1[−dω4+Ä6 −6Ä]ζ 12. (15)

HenceA is flat if and only ifÄ = Äω,4a
b = dωθaθb − θadωθb and the Cartan

structure equations, Eqs. (11) and (12)—and Eq. (13), are satisfied.
The next corollary follows directly from Eq. (8).



P1: ZBU

International Journal of Theoretical Physics [ijtp] pp1044-ijtp-475687 November 12, 2003 1:41 Style file version May 30th, 2002

Generalized Forms, Connections, and Gauge Theories 2977

Corollary 3.1. WhenA is flatA = m−1dm where

m = 1− (k1)−1ωζ 1+ (k1k2)−1[−Äω − k16]ζ 12. (16)

Corollary 3.2. When4 = 0 in Eqs. (14) and (15), and the 1-forms{θa} are
linearly independent,A is flat if and only ifω is the Levi-Civita connection, with
curvatureÄ, of the signature (p, q) metric ds2 = ηabθ

aθb.

By imposing restrictions on the choices ofÄ and4 in Eqs. (14) and (15)
different types of geometries can be associated with flat connections. The following
corollary contains one example of this—Ricci flat metrics.

Corollary 3.3. Let (i)4 = 0 in Eqs. (14) and (15), (ii)Äa
·b = 1/2Ca·c

·b·d6
d
·c, where

Ca·c
·b·a = Ca·b

·b·a = 0, and (iii) the 1-forms{θa} be linearly independent.

Then the connection 1-formA is flat if and only if ω is the Levi-Civita
connection of theRicci-flatmetricds2 = ηabθ

aθb.

4. FLAT GENERALIZED CONNECTIONS AND FIELD EQUATIONS IN
FOUR DIMENSIONS

Here a source-free Yang-Mills field, with internal symmetry groupGI , cou-
pled to gravity through the Einstein–Yang-Mills equations will be considered. For
the sake of definiteness four-metrics,ds2 = ηabθ

aθb, with ηab = diag(1, 1, 1,−1)
will be considered. The field equations, can be written in the form

dω6 = 0,

dα ∗z = 0,

dω + ωω = Ä,

dα + αα = z, (17)

whereω is theso(3,1)-valued Levi-Civita connection 1-form,6a
·b = θaθb, andα is

the Yang-Mills gauge potential (connection) and takes values in the Lie algebra of
GI . Here∗z denotes the Hodge dual of the Yang-Mills field (curvature) two form
z = 1

2z
i
j ab6

ab, and herea, b, c, d = 1− 4, and the internal Lie algebra indices
i , j = 1− dimGI . The curvature 2-formÄ is given by

Äa
·b =

1

2
Ca
·bcd6

cd + 2π (Tbd6
ad + Tbc6

ac+6c
·bTa

c +6d
·bTa

d ), (18)

whereCa
·bcd are the components of the Weyl conformal curvature of the metric and

Tab are the components of the energy–momentum tensor of the Yang-Mills field.
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The last equation is just a convenient way of writing Einstein’s equations

Gab = 8πTab,

Tab = 1

4π
tr

(
FacF ·cb −

1

4
ηabzcdzcd

)
. (19)

These equations can be rewritten in terms of a connection 1-form0 and a
2-formϒ which take values in the Lie algebra ofSO(1, 3)×GI as follows (c.f.
Robinson, 1995). Let

0 = ω1G + 1Lα,

ϒ = 61G + 1L ∗z,

5 = Ä1G + 1Lz, (20)

where 1L and 1G respectively represent the identities inSO(1,3) andGI . The first
two equations in Eqs. (17) are then equivalent to the equation

d0ϒ = 0, (21)

and the second pair of equations in Eq. (17) are equivalent to the equation

d0 + 00 = 5. (22)

The components of these objects may be written in an index notation as
0α·β ≡ 0a·i

·b· j = ωa
·bδ

i
j + δa

·bα
i
· j ,ϒ

α
·β ≡ ϒa·i

·b· j = 6a
·bδ

i
· j + δa

·b ∗zi
· j ,

and5α
·β ≡ 5a·i

·b· j = Äa
·bδ

i
· j + δa

·bzi
· j .

By comparing the Einstein–Yang-Mills field equations given by Eqs. (21)
and (22) with the equations in Section 3, it is clear that these equations can be
rewritten in terms of a flat generalized connection 1-form. Let

A = 0 +ϒζ 1+ [−(k2)−15− (k2)−1k1ϒ ]ζ 2, (23)

where0 ≡ ω1G + 1Lα,ϒ ≡ 61G + 1L ∗ (dα + αα), and5 are respectively 1-
forms and 2-forms with values in the Lie algebra ofSO(1, 3)× GI . Then, since
the curvature 2-formF = dA + AA is given by

F = (d0 + 00 −5)+ d0ϒζ
1− (k2)−1[d05

+ k1d0ϒ ]ζ 2+ (k2)−1[5ϒ −ϒ5]ζ 12,

the following proposition holds

Proposition 4.1. The connection 1-formA given by Eq. (23) is flat if and only if
the Einstein–Yang-Mills equations are satisfied.

It is a straightforward matter to show that the Yang-Mills equations alone can
also be represented by a flat connection.
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Proposition 4.2. Consider the two parameter family of connection 1-forms

A = α − D−1(c2z+ k2 ∗z)ζ 1+ D−1(c1z+ k1 ∗z)ζ 2, (24)

where the parameters c1, c2 are chosen so that D≡ c2k1− c1k2 is nonzero. Since
the curvature 2-forms are given by

F = (dα + αα−z)− D−1(c2dαz+ k2dα ∗z)ζ 1+ D−1(c1dαz+ k1dα ∗z)ζ 2,

the connectionA is flat if and only if the one formα and the two formz satisfy
the source-free Yang-Mills equations, dα + αα = z and dα ∗z = 0.

5. SOURCE-FREE MAXWELL EQUATIONS FOR TYPE N = 2 FORMS

In this concluding section it will be shown that the structure of the source-
free Maxwell-like equations for typeN = 2 forms differs from the structure of
the standard Maxwell equations. This is in line with previous results forN =
1 forms (Nurowski and Robinson, 2002). It illustrates a difference between the
fields and equations considered above and those determined by nonflat generalized
connections.

The generalized source-free Maxwell equations for typeN = 2 forms, in a
four-dimensional space–time with a Lorentzian metric, are defined to be

dF = 0, (25)

d ? F = 0, (26)

whereF is a generalized 2-form and?F is its Hodge dual, a generalized zero-
form. For N > 0 all closed generalized forms are exact, hence Eq. (25) can be
solved by introducing a potential forF, a generalized 1-formA with F = dA.
As usualA can be interpreted as a connection 1-form with curvatureF and the
gauge freedomA → Â = g−1dg+ A is the one-dimensional (abelian) version
of the gauge transformation given in Section 2. Using the notation of Section 2,
applied to this particular potential, it follows from Eqs. (1) and (2) that ifA =
α + βi ζ

i + γ ζ 12 then

F = (dα + βi k
i )+ (dβ1+ k2γ )ζ 1+ (dβ2− k1γ )ζ 2+ dγ ζ 12. (27)

Using the definition of Hodge dual for generalized 2-forms (Robinson, 2003).

?F = ∗dγ + (∗dβ2− k1 ∗ γ )ζ 1− (∗dβ1+ k2 ∗ γ )ζ 2+ (∗dα + ki ∗ βi )ζ
12.

(28)

Now Eq. (26) is satisfied if and only if

d ? F = 1
χ + 2

χ i ζ
i + 3

χζ 12, (29)
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is zero, that is if and only if

1
χ ≡ d(∗dγ )+ [(k1)2+ (k2)2] ∗ γ − k1 ∗ dβ2+ k2 ∗ dβ1 = 0; (30)

2
χ1 ≡ d(∗dβ2− k1 ∗ γ )− k2(∗dα + ki ∗ βi ) = 0; (31)

2
χ2 ≡ −{d(∗dβ1+ k2 ∗ γ )− k1(∗dα + ki ∗ βi )} = 0; (32)

3
χ ≡ d(∗dα + ki ∗ βi ) = 0. (33)

It should be noted that Eq. (33) is satisfied whenever either Eq. (31) or Eq. (32) is
satisfied. By using the gauge freedom discussed in Section 2 it is possible to choose
a gauge in whichα = β2 = 0. The remaining gauge freedom then is given by
gauge transformations in which,g= mn, n = π, m = 1+ (k1)−1d(lnπ )ζ 1, and
under whichβ1 andγ remain unchanged. In this gauge it follows from Eq. (31)
that

β1 = (k2)−1δγ , (34)

whereδ = ∗d∗ is the co-differential operator. When this expression forβ1 is used
Eq. (32) can be seen to satisfied whenever Eq. (30) is; and the latter, now the only
equation remaining to be solved, becomes the Proca-type equation

1γ + [(k1)2+ (k2)2]γ = 0, (35)

where1 = dδ + δd is the Laplace operator for 3-forms. Consequently, in this
gauge the potential is given byA = (k2)−1δγ ζ 1+ γ ζ 12, and it satisfies the field
equations, Eqs. (25) and (26), if and only if Eq. (35) is satisfied.

The above calculations could be extended, for example, to straightforwardly
generalize the formalism of higher-order gauge theories (Alvarez and Olive, 2003)
in n dimensions.
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